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Interaction between a vortex and a columnar defect in the London approximation

H. Nordborg* and V. M. Vinokur
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~Received 20 January 2000!

We calculate the interaction between a vortex and an insulating cylindrical cavity in a type-II superconductor
using the London approximation, thus extending the result in an earlier work by Mkrtchyan and Shmidt„Zh.
Éksp. Teor. Fiz.61, 367 ~1971! @Sov. Phys. JETP34, 195 ~1972!#… to an arbitrarily large cavity radius. In the
limit of an infinitely large radius our result reduces to the well-known Bean-Livingston formula for the
interaction between a vortex and an insulating wall.
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I. INTRODUCTION

The interaction between a vortex and an insulating cy
drical cavity in a type-II superconductor was calculated
1972 by Mkrtchyan and Shmidt1 and was long regarded as
somewhat academic exercise in the phenomenology of
vortex state. Their result has gained importance in rec
years in connection with the extensive study of high-Tc su-
perconductors containing artificially manufactured colum
defects due to irradiation with heavy ions~see, for example
Ref. 2 for a recent review!. Modeling an amorphous trac
left by a heavy ion as an insulating cylindrical cavity, th
Mkrtchyan-Shmidt maximal pinning force gives a reasona
estimate for a low-field–temperature columnar defect criti
current. Making use of the full interaction between a vort
and a cavity one derives a temperature dependence o
critical current,3,4 which agrees excellently with experiment
The work by Mkrtchyan and Shmidt, which henceforth w
be referred to as Ref. 1, has thus become the basic refer
to researchers working in the field of high-temperature
perconductivity~HTS!.

Interestingly, Ref. 1, which was completed long befo
the discovery of HTS, seems to be designed specifically f
heavy ion tracks as it only considers a cylinder of radiusb
!l, wherel is the London penetration depth. Recent dev
opments in artificially engineered pinning structures~see, for
example Ref. 5! raise the question of the interaction betwe
a vortex and a large cavity, with the radiusb comparable to
or even exceedingl. The results of Ref. 1 could have bee
easily extended to arbitraryb if not for an unfortunate over-
sight in the calculations, which invalidates the result at la
values ofb. One can easily see, in particular, that taking t
limit of an infinitely large cavity in Ref. 1 does not reproduc
the Bean-Livingston barrier for a vortex interacting with
flat interface. Motivated by the quest for a general res
valid in the whole range of parameters we present more g
eral and somewhat more transparent derivation for the in
action of a vortex with a cylindrical cavity. We also demo
strate that the result of Ref. 1 for small cavities can ve
easily and instructively be obtained using the method of
age vortices similar to Ref. 6, as has already been pointed
by Buzdin and Feinberg.7,8 A very similar problem has bee
discussed by Weiet al., who considered the interaction be
tween a vortex and a cylindricalsuperconductingcolumn
with a different penetration depth.9 There is no a simple way
PRB 620163-1829/2000/62~18!/12408~5!/$15.00
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however, to generalize their result into the result presen
here, since the boundary conditions at the edge of the ca
are completely different.

We consider a superconductor with an infinitely long c
lindrical cavity, i.e., a columnar defect, of radiusb. The in-
duction is taken to be parallel with the column, which
directed along thez axis. We thus have a two-dimension
problem and only have to solve the London equation for
z componentB(x,y) of the induction. We measure a
lengths in units of the London penetration depthl and mea-
sure the induction in units ofA2Hc5F0 /2plj, whereHc is
the thermodynamic critical field,F0 is the flux quantum, and
j is the superconducting coherence length. The Lond
equation for the magnetic induction from a vortex is th
given by

B2DB5
2p

k
d (2)~r2r0!, ~1!

wherek5l/j is the Ginzburg parameter andr0 is the posi-
tion of the vortex. The boundary condition for the cavity

Js•n50, ~2!

i.e., the supercurrent is tangential to the boundary. Since
current is given by the curl of the magnetic induction,
follows thatB(r ) is constant on the boundary of the cavit
From the fact thatB is a harmonic function inside the cavity
it then follows that the induction is constant,B(r )5B0, in-
side the entire cavity.

II. SOLVING THE LONDON EQUATION

We take the center of the column to be the origin of o
coordinate system and use polar coordinates (r ,f). It is con-
venient to split the induction in two parts

B~r ,f!5B1~r !1B2~r ,f!, ~3!

whereB1 is the radially symmetric field due to the column
defect andB2 is the contribution from the vortex. The fiel
B1 satisfies the homogeneous London equation

]2B1

]r 2
1

1

r

]B1

]r
2B150, ~4!
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with the boundary conditionB1(b)5B0. The solution is eas-
ily found to be

B1~r !5B0

K0~r !

K0~b!
, r>b. ~5!

The fieldB2 is the solution to the inhomogeneous equatio

]2B2

]r 2
1

1

r

]B2

]r
1

1

r 2

]2B2

]f2
2B252

2p

kr
d~f!d~r 2r 0!,

~6!

with the boundary conditionB2(b,f)50. This equation is
solved using separation of variables

B2~r ,f!5(
n

B̃n~r !einf, ~7!

and the solution has the form

B̃n~r !5anI n~r !1bnKn~r !, b<r<r 0 , ~8a!

B̃n~r !5gnKn~r !, r 0<r . ~8b!

In order to find the constantsan , bn , andgn we use the fact
that B̃n(b)50, B̃n(r ) should be continuous atr 5r 0, and the
discontinuity in the derivate ofB̃n(r ) due to thed function is
given by

dB̃n

dr
U

r 01

2
dB̃n

dr
U

r 02

52
1

kr 0
. ~9!

Solving for the constants, we find the solution

B̃n~r !5
1

k
Kn~r 0!H I n~r !2

I n~b!Kn~r !

Kn~b! J , b<r<r 0 ,

~10a!

B̃n~r !5
1

k
Kn~r !H I n~r 0!2

I n~b!Kn~r 0!

Kn~b! J , r 0<r .

~10b!

In order to better understand the solution for the fieldB2,
and to obtain a form which can be implemented numerica
we compare it to the solution for a vortex atr0 without the
cavity. We call this solutionBv(r ,f) and find

Bv~r ,f!5(
n

B̃n
v~r !einf ~11!

with

B̃n
v~r !5

1

k
Kn~r 0!I n~r !, 0<r<r 0 , ~12a!

B̃n
v~r !5

1

k
I n~r 0!Kn~r !, r 0<r . ~12b!

On the other hand, we know that the field from the vortex
r0 is given by

Bv~r !5
1

k
K0~ ur2r0u!. ~13!
,

t

A comparison of Eqs.~10! and~12! shows that we can write

B2~r !5
1

k
K0~ ur2r0u!1B2

c~r ,f!, ~14!

whereB2
c , which represents the modification of the vorte

field due to the column, is given by

B2
c~r ,f![B2

c~r ,f;r 0!5(
n

B̃n
c~r !einf, ~15!

where

B̃n
c~r !52

1

k

I n~b!Kn~r 0!

Kn~b!
Kn~r !, r 0.b. ~16!

The advantage of writing the fieldB2(r ) in the form of Eq.
~14! is that the divergence atr5r0 is taken care of explicitly
and that the termB2

c(r ,f;r 0) is well defined for allr .b. It
follows directly from Eq. ~16!, or from the fact that
B2(b,0)50, that forr05(b,0) we have

B2
c~r ,f;b!52

1

k
K0@ ur2~b,0!u#. ~17!

This property will be useful when computing the energy.
In order to find the induction inside the cavity we use t

fact that the order parameter has to be single valued. T
leads to the usual condition for flux quantization~see, e.g.,
Ref. 10!,

“3B5k21¹u2A, ~18!

where u is the phase of the order parameter andA is the
vector potential. Integrating this along the perimeter of t
cavity we obtain

bE df~“3B!f5
2pq

k
2pb2B0 , ~19!

where q is the number of flux quanta in the cavity. Th
integral overf can easily be computed using

~“3B!f52
]B

]r
. ~20!

and the fact that only the terms withn50 survive. From this
we obtain

B05
1

kb

K0~r 0!1qK0~b!

K1~b!1 1
2 bK0~b!

, ~21!

which is identical to Eq.~8! in Ref. 1.

III. COMPUTING THE INTERACTION ENERGY

The next task is to compute the energy of the syste
which in the London approximation is given by

F5E d2r $B21~“3B!2%, ~22!

where the energy is measured in units ofBc
2l2/4p, lengths in

units of l, and the induction in units ofA2Bc . Here, and in
the following, we always refer to the energy per unit leng
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of the vortex. The integral~22! can be evaluated directl
over the area inside the cavity and yields

Fcav i ty5pb2B0
2 . ~23!

In order to evaluate the integral for the outside region,
rewrite it according to

F5E d2r B•$B1“3~“3B!%1 R dS•B3~“3B!.

~24!

The contribution from the volume integral in Eq.~24! fol-
lows directly from the London equation, and we find

E d2r B•$B1“3~“3B!%5
2p

k
B~r 0,0!. ~25!

The surface integral can be rewritten as

R dS•B3~“3B!52
b

2

]

]r E dfB2~r ,f!. ~26!

Performing first the integration overf we find

E dfB2~r ,f!52pH @B1~r !1B̃0~r !#21 (
nÞ0

B̃n~r !2J .

~27!

Using the fact that

B̃n~b!50,
]B̃n~r !

]r
U

r 5b

5
Kn~r 0!

kbK0~b!
, ~28!

we arrive at

R dS•B3~“3B!5
2pB0

kK0~b!
@kbB0K1~b!2K0~r 0!#.

~29!

Adding all the pieces together we obtain the final result

F5pb2B0
21

2pB0

kK0~b!
@kbB0K1~b!2K0~r 0!#1

2p

k
B~r 0,0!.

~30!

The latter formula can be simplified further by inserting t
expressions forB0 andB(r ). After some straightforward al
gebra we arrive at

F5
2p

k2bK0~b!

@K0~r 0!1qK0~b!#2

K1~b!11
2 bK0~b!

1
2p

k2
K0~k21!1

2p

k
B2

c~r 0,0;r 0!, ~31!

where we have cut off the divergence ofB2(r 0,0) at a dis-
tancek21. The first term in this expression differs signifi
cantly from the result given in Eq.~10! in Ref. 1 if the
condition b!1 is not fulfilled. Taking the limit of largeb,
with q}b2, one sees that the induction and the energy t
the form
e

e

B05
2q

kb2
, F5pb2B0

2 , ~32!

as should be expected. It is easy to derive the result fo
cavity containingq flux quanta, without an external vortex
In this case we obviously find a rotationally symmetric so
tion with the induction given by

B~r !5B0

K0~r !

K0~b!
, B05

1

kb

qK0~b!

K1~b!11
2 bK0~b!

~33!

and the energy

F5
2pq2

k2b

K0~b!

K1~b!11
2 bK0~b!

~34!

It follows from Eq. ~31! and from the observation

B2
c~b,0;b!52

1

k
K0~k21!, ~35!

that the energy for a vortex at a positionr5r0 and a cavity
containingq flux quanta smoothly changes into the result f
a cavity withq11 flux quanta as the vortex enters the ca
ity, i.e., r 0→b.

The potential for a vortex interacting with a column co
taining q flux quanta is obtained directly from Eq.~31! by
dropping all terms which do not involver 0. We find

UVC~r !5
2p

k2bK0~b!

K0~r !212qK0~b!K0~r !

K1~b!11
2 bK0~b!

2
2p

k2 (
n

I n~b!

Kn~b!
Kn

2~r ! r .b, ~36!

wherer is the distance from the vortex to the center of t
column. The interaction potential~36! is our main result and
gives the interaction of a vortex with an insulating column
radiusb containingq flux quanta, where bothb andq can be
arbitrarily large. The potentialUVC(R) is plotted in Fig. 1 for
a number of different values ofb. It vanishes exponentially
fast at large distances, i.e., forr !1.

IV. SOLUTION USING IMAGE VORTICES

If b,r 0!1, the problem can be solved easily using ima
vortices, transcribing a problem from the textbook by La
dau and Lifshits6 for a charged line in an infinite dielectri
near a cylindrical cavity with different dielectric constant,
has first been pointed out by Buzdin and Feinberg.7,8 Assum-
ing the magnetic induction from a vortex to decay logari
mically, we can satisfy the boundary conditions for the ca
ity by placing q11 positive vortices in the center and
negative vortex at the distancel 5b2/r 0 from the center. The
magnetic induction is then given by

B~r !52
1

k
@~q11!ln~ ur u!1 ln~ ur2r0u!2 ln~ ur2 lu!#,

~37!

where l5(b2/r 0,0). The energy of the system can then
computed by integration as above and becomes particu
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simple in the case ofq50, since the surface integral van
ishes. We then find the energy

F5
2p

k2 H lnS 12
b2

r 0
2 D 2 ln~k21!J . ~38!

The interaction is again given by ther 0 dependent part of Eq
~38! and we finally obtain4

UIV~r !5
2p

k2
lnS 12

b2

r 2 D . ~39!

The interaction potential~39! is also shown in Fig. 1 and
compares favorably with the exact result forb&0.2. In the
case of larger columns, the image vortex solution produc
too long-ranged interaction. Note in particular that t
UIV(r ) approaches zero as (b/r )2, whereas the exact poten
tial UVC(r ) decays exponentially for large distances.

V. BEAN-LIVINGSTON BARRIER

The main problem with the result in Ref. 1 is that it fai
to describe the limit of a large column. Sending the colu
radius to infinity, one expects to obtain the interaction b
tween a vortex and a flat insulating wall, i.e., the Bea
Livingston barrier. We show below that this is indeed t
case for the interaction in Eq.~36!. For the sake of complete
ness, however, we first derive the Bean-Livingston bar
using methods similar to those above. Consider an inter
to an insulator, which we take to coincide with they axis and
a vortex at a distanced from the wall at positionr5(d,0).
The symmetry of the problem makes it possible to solve

FIG. 1. The vortex-column potential for a number of differe
values of b: b50.1 ~solid lines!, b50.2 ~dashed lines!, and b
50.5 ~dotted lines!. The upper curve corresponds to the exact
lution UVC(r ) and the lower curve to the potentialUIV(r ) obtained
using the method of image vortices in all three cases.
a
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London equation exactly using image vortices and we fi
the induction

B~x,y!5He2x1
1

k
$K0~A~x2d!21y2!

2K0~A~x1d!21y2!%, ~40!

for x.0. The energy can again be calculated using par
integration. The bulk term gives the contribution

Fbulk5
2p

k
B~d,0!5

2p

k
He2d1

2p

k2
K0~k21!2

2p

k2
K0~2d!,

~41!

where we again have cut off the divergence at a dista
k21. The surface term is simply an integral along they axis
and we find

R dS•B3~“3B!52E dy B]xB

5
2Hd

k E dy
K1~Ad21y2!

Ad21y2

5
2pH

k
e2d. ~42!

The integral was computed using the substitutiony
5d sinh(x) and Eq.~6.6648! in Ref. 11. Adding all the parts
we find energy

FBL5
4p

k
He2d1

2p

k2
K0~k21!2

2p

k2
K0~2d!. ~43!

Dropping irrelevant terms, we arrive at the well-know
Bean-Livingston barrier,

UBL~d!5
4p

k
He2d2

2p

k2
K0~2d!, ~44!

which we have normalized so that it vanishes for larged.
This well-known result can be found in many textbooks
superconductivity~see, e.g., Ref. 12!.

VI. INFINITELY LARGE COLUMN RADIUS

We now turn to the case of an infinitely large cavity a
show that this reproduces the Bean-Livingston result abo
We want to have a finite induction in the cavity and w
therefore need a large number of flux quanta,q}b2. Further-
more, we want the distance of the vortex from the edge
the cavity to be finite and writer 05b1d. Inserting this into
Eq. ~36! and discarding irrelevant terms we find

UVC~b1d!'
8pq

k2b2

K0~b1d!

K0~b!
1

2p

k
B2

c~b1d,0!. ~45!

Using the fact that we haveB0'2q/kb2, we can write this
as

-



rv-

i-

ut

an
r

y
n-
e

le
US
on-

e
e

12 412 PRB 62H. NORDBORG AND V. M. VINOKUR
UVC~b1d!'
4p

k
B0

K0~b1d!

K0~b!
1

2p

k
B2

c~b1d,0!.

~46!

For the first term we have the approximation

4p

k
B0

K0~b1d!

K0~b!
'

4p

k
B0e2dA b

b1d
'

4p

k
B0e2d,

~47!

in agreement with Eq.~44!. It thus remains to show that

lim
b→`

kB2
c~b1d,0!52K0~2d!. ~48!

FIG. 2. Comparison of the Bean-Livingston barrier~solid line!
with the vortex-column interaction for large columns (b
55,10,20). We always haveq5b2 flux quanta in the column~in
dimensionless quantities!, producing a magnetic induction ofB
'qF0 /pb2 in the limit of large columns. The convergence to th
BL result is slow, but already the smallest column shows the corr
characteristic shape.
We did not find a simple proof of Eq.~48!, but the result can
be understood in the following manner: We begin by obse
ing that

K0~2d!5(
n

I n~b!Kn~b12d! ~49!

for any b. It then follows that

K0~2d!1kB2
c~b1d,0!

5(
n

I n~b!Kn~b12d!H 12
Kn~b1d!2

Kn~b!Kn~b12d!J .

~50!

Inserting the lowest order asymptotic expansion we find

12
Kn~b1d!2

Kn~b!Kn~b12d!
'

1

2 S d

bD 2

, ~51!

which shows that the right-hand side of Eq.~50! vanishes in
the limit b→`, a result which we have also verified numer
cally. In Fig. 2 we plot the Bean-Livingston barrier~43!
compared to the column-vortex interaction~36! for a number
of different column sizes. The convergence is fairly slow, b
already the column of the sizeb55 shows the typical Bean-
Livingston shape.

VII. CONCLUSION

We have derived the interaction between a vortex and
arbitrarily large cylindrical cavity in a type-II superconducto
using the London approximation. In the limit of an infinitel
large cavity, the interaction reduces to the well-known Bea
Livingston result. Our work extends an earlier work on th
same subject.
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